Skip to content

Geometry#

This contains some utilities for adding geometry to an IDF.

Geometry utilities for the UBEM construction.

ShoeboxGeometry #

Bases: BaseModel

A simple shoebox constructor for the IDF model.

Can create gables, basements, and various zoning strategies.

Source code in epinterface\geometry.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
class ShoeboxGeometry(BaseModel):
    """A simple shoebox constructor for the IDF model.

    Can create gables, basements, and various zoning strategies.
    """

    x: float
    y: float
    w: float
    d: float
    h: float
    num_stories: int = Field(
        ...,
        title="Number of stories",
        ge=1,
        description="The number of stories in the building.",
    )
    zoning: ZoningType = Field(
        ...,
        title="Zoning type",
        description="Whether to use core/perim or full-floor zones.",
    )
    perim_depth: float = Field(
        default=3,
        title="Perimeter depth",
        description="Sets the perimeter depth when using core/perim zoning.  Ignored otherwise.",
    )
    roof_height: float | None = Field(
        default=None,
        title="Roof gable height",
        description="The height of the roof gable.  If None, a flat roof is assumed.",
    )
    basement: bool = Field(
        default=False,
        title="Basement",
        description="Whether or not to use a basement with same f2f height as building.",
    )
    wwr: float = Field(
        default=0.15,
        title="Window-to-wall ratio",
        description="The window-to-wall ratio of the building.",
        ge=0,
        le=1,
    )

    @property
    def basement_storey_count(self) -> int:
        """Return the number of basement stories."""
        return 1 if self.basement else 0

    @property
    def attic_storey_count(self) -> int:
        """Return the number of attic stories."""
        return 1 if self.roof_height else 0

    @property
    def zones_height(self) -> float:
        """Return the total height of the zones, excluding any gabling."""
        return self.h * (self.num_stories)

    @property
    def total_height_with_gabling(self) -> float:
        """Return the total height of the building, including any gabling."""
        return self.zones_height + (self.roof_height or 0)

    @property
    def footprint_area(self) -> float:
        """Return the total floor area of the building."""
        return self.w * self.d

    @property
    def total_living_area(self) -> float:
        """Return the total living area of the building (does not include attic/basement)."""
        return self.footprint_area * self.num_stories

    @property
    def total_area(self) -> float:
        """Return the total area of the building."""
        return (
            self.total_living_area
            + self.footprint_area * self.basement_storey_count
            + self.footprint_area * (1 if self.roof_height else 0)
        )

    @property
    def basement_suffix(self) -> str:
        """Return the basement suffix for the building."""
        if not self.basement:
            msg = "Building has no basement."
            raise ValueError(msg)
        return "Storey 0" if self.zoning == "core/perim" else "Storey -1"

    @property
    def zones_per_storey(self) -> int:
        """Return the number of zones per storey."""
        if self.zoning == "core/perim":
            return 5
        else:
            return 1

    def add(self, idf: IDF) -> IDF:
        """Constructs a simple shoebox geometry in the IDF model.

        Takes advantage of the geomeppy methods to do so.

        Can create gables, basements, and various zoning strategies.

        Args:
            idf: The IDF model to add the geometry to.

        Returns:
            The IDF model with the added geometry.
        """
        lower_left_corner = (self.x, self.y)
        lower_right_corner = (self.x + self.w, self.y)
        upper_right_corner = (self.x + self.w, self.y + self.d)
        upper_left_corner = (self.x, self.y + self.d)
        bottom_plane = [
            lower_left_corner,
            lower_right_corner,
            upper_right_corner,
            upper_left_corner,
        ]
        idf.add_block(
            name="shoebox",
            coordinates=bottom_plane,
            height=self.zones_height
            + (self.h if self.basement and self.zoning == "core/perim" else 0),
            num_stories=self.num_stories + self.basement_storey_count,
            zoning=self.zoning,
            perim_depth=self.perim_depth,
            below_ground_stories=self.basement_storey_count,
            below_ground_storey_height=self.h,
        )
        if self.basement and self.zoning == "core/perim":
            idf.translate((0, 0, -self.h))

        if self.roof_height:
            for srf in idf.idfobjects["BUILDINGSURFACE:DETAILED"]:
                if srf.Surface_Type.lower() == "roof":
                    srf.Surface_Type = "ceiling"
            idf.newidfobject("ZONE", Name="Attic")
            roof_centerline = self.x + self.w / 2
            vert_0 = (self.x, self.y + self.d, self.zones_height)
            vert_1 = (self.x, self.y, self.zones_height)
            vert_2 = (roof_centerline, self.y, self.total_height_with_gabling)
            vert_3 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
            idf.newidfobject(
                "BUILDINGSURFACE:DETAILED",
                Name="Gable1",
                Surface_Type="Roof",
                Number_of_Vertices=4,
                View_Factor_to_Ground=0,
                Vertex_1_Xcoordinate=vert_0[0],
                Vertex_1_Ycoordinate=vert_0[1],
                Vertex_1_Zcoordinate=vert_0[2],
                Vertex_2_Xcoordinate=vert_1[0],
                Vertex_2_Ycoordinate=vert_1[1],
                Vertex_2_Zcoordinate=vert_1[2],
                Vertex_3_Xcoordinate=vert_2[0],
                Vertex_3_Ycoordinate=vert_2[1],
                Vertex_3_Zcoordinate=vert_2[2],
                Vertex_4_Xcoordinate=vert_3[0],
                Vertex_4_Ycoordinate=vert_3[1],
                Vertex_4_Zcoordinate=vert_3[2],
                Zone_Name="Attic",
            )

            vert_0 = (self.x + self.w, self.y, self.zones_height)
            vert_1 = (self.x + self.w, self.y + self.d, self.zones_height)
            vert_2 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
            vert_3 = (roof_centerline, self.y, self.total_height_with_gabling)
            idf.newidfobject(
                "BUILDINGSURFACE:DETAILED",
                Name="Gable2",
                Surface_Type="Roof",
                Number_of_Vertices=4,
                View_Factor_to_Ground=0,
                Vertex_1_Xcoordinate=vert_0[0],
                Vertex_1_Ycoordinate=vert_0[1],
                Vertex_1_Zcoordinate=vert_0[2],
                Vertex_2_Xcoordinate=vert_1[0],
                Vertex_2_Ycoordinate=vert_1[1],
                Vertex_2_Zcoordinate=vert_1[2],
                Vertex_3_Xcoordinate=vert_2[0],
                Vertex_3_Ycoordinate=vert_2[1],
                Vertex_3_Zcoordinate=vert_2[2],
                Vertex_4_Xcoordinate=vert_3[0],
                Vertex_4_Ycoordinate=vert_3[1],
                Vertex_4_Zcoordinate=vert_3[2],
                Zone_Name="Attic",
            )

            # make triangular endcaps
            vert_0 = (self.x, self.y, self.zones_height)
            vert_1 = (self.x + self.w, self.y, self.zones_height)
            vert_2 = (roof_centerline, self.y, self.total_height_with_gabling)

            idf.newidfobject(
                "BUILDINGSURFACE:DETAILED",
                Name="Endcap1",
                Surface_Type="Wall",
                Number_of_Vertices=3,
                Vertex_1_Xcoordinate=vert_0[0],
                Vertex_1_Ycoordinate=vert_0[1],
                Vertex_1_Zcoordinate=vert_0[2],
                Vertex_2_Xcoordinate=vert_1[0],
                Vertex_2_Ycoordinate=vert_1[1],
                Vertex_2_Zcoordinate=vert_1[2],
                Vertex_3_Xcoordinate=vert_2[0],
                Vertex_3_Ycoordinate=vert_2[1],
                Vertex_3_Zcoordinate=vert_2[2],
                Zone_Name="Attic",
            )

            vert_0 = (self.x + self.w, self.y + self.d, self.zones_height)
            vert_1 = (self.x, self.y + self.d, self.zones_height)
            vert_2 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
            idf.newidfobject(
                "BUILDINGSURFACE:DETAILED",
                Name="Endcap2",
                Surface_Type="Wall",
                Number_of_Vertices=3,
                Vertex_1_Xcoordinate=vert_0[0],
                Vertex_1_Ycoordinate=vert_0[1],
                Vertex_1_Zcoordinate=vert_0[2],
                Vertex_2_Xcoordinate=vert_1[0],
                Vertex_2_Ycoordinate=vert_1[1],
                Vertex_2_Zcoordinate=vert_1[2],
                Vertex_3_Xcoordinate=vert_2[0],
                Vertex_3_Ycoordinate=vert_2[1],
                Vertex_3_Zcoordinate=vert_2[2],
                Zone_Name="Attic",
            )

            idf.newidfobject(
                "BUILDINGSURFACE:DETAILED",
                Name="attic_bottom_plane",
                Surface_Type="Floor",
                Number_of_Vertices=4,
                Vertex_1_Xcoordinate=self.x + self.w,
                Vertex_1_Ycoordinate=self.y,
                Vertex_1_Zcoordinate=self.zones_height,
                Vertex_2_Xcoordinate=self.x,
                Vertex_2_Ycoordinate=self.y,
                Vertex_2_Zcoordinate=self.zones_height,
                Vertex_3_Xcoordinate=self.x,
                Vertex_3_Ycoordinate=self.y + self.d,
                Vertex_3_Zcoordinate=self.zones_height,
                Vertex_4_Xcoordinate=self.x + self.w,
                Vertex_4_Ycoordinate=self.y + self.d,
                Vertex_4_Zcoordinate=self.zones_height,
                Zone_Name="Attic",
            )

        idf.intersect_match()

        idf.set_default_constructions()

        # Handle Windows
        window_walls = [
            w
            for w in idf.idfobjects["BUILDINGSURFACE:DETAILED"]
            if w.Outside_Boundary_Condition.lower() == "outdoors"
            and "attic" not in w.Zone_Name.lower()
            and (
                not w.Zone_Name.lower().endswith(self.basement_suffix.lower())
                if self.basement
                else True
            )
            and w.Surface_Type.lower() == "wall"
        ]
        idf.set_wwr(
            wwr=self.wwr,
            construction="Project External Window",
            force=True,
            surfaces=window_walls,
        )
        return idf

attic_storey_count: int property #

Return the number of attic stories.

basement_storey_count: int property #

Return the number of basement stories.

basement_suffix: str property #

Return the basement suffix for the building.

footprint_area: float property #

Return the total floor area of the building.

total_area: float property #

Return the total area of the building.

total_height_with_gabling: float property #

Return the total height of the building, including any gabling.

total_living_area: float property #

Return the total living area of the building (does not include attic/basement).

zones_height: float property #

Return the total height of the zones, excluding any gabling.

zones_per_storey: int property #

Return the number of zones per storey.

add(idf) #

Constructs a simple shoebox geometry in the IDF model.

Takes advantage of the geomeppy methods to do so.

Can create gables, basements, and various zoning strategies.

Parameters:

Name Type Description Default
idf IDF

The IDF model to add the geometry to.

required

Returns:

Type Description
IDF

The IDF model with the added geometry.

Source code in epinterface\geometry.py
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def add(self, idf: IDF) -> IDF:
    """Constructs a simple shoebox geometry in the IDF model.

    Takes advantage of the geomeppy methods to do so.

    Can create gables, basements, and various zoning strategies.

    Args:
        idf: The IDF model to add the geometry to.

    Returns:
        The IDF model with the added geometry.
    """
    lower_left_corner = (self.x, self.y)
    lower_right_corner = (self.x + self.w, self.y)
    upper_right_corner = (self.x + self.w, self.y + self.d)
    upper_left_corner = (self.x, self.y + self.d)
    bottom_plane = [
        lower_left_corner,
        lower_right_corner,
        upper_right_corner,
        upper_left_corner,
    ]
    idf.add_block(
        name="shoebox",
        coordinates=bottom_plane,
        height=self.zones_height
        + (self.h if self.basement and self.zoning == "core/perim" else 0),
        num_stories=self.num_stories + self.basement_storey_count,
        zoning=self.zoning,
        perim_depth=self.perim_depth,
        below_ground_stories=self.basement_storey_count,
        below_ground_storey_height=self.h,
    )
    if self.basement and self.zoning == "core/perim":
        idf.translate((0, 0, -self.h))

    if self.roof_height:
        for srf in idf.idfobjects["BUILDINGSURFACE:DETAILED"]:
            if srf.Surface_Type.lower() == "roof":
                srf.Surface_Type = "ceiling"
        idf.newidfobject("ZONE", Name="Attic")
        roof_centerline = self.x + self.w / 2
        vert_0 = (self.x, self.y + self.d, self.zones_height)
        vert_1 = (self.x, self.y, self.zones_height)
        vert_2 = (roof_centerline, self.y, self.total_height_with_gabling)
        vert_3 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
        idf.newidfobject(
            "BUILDINGSURFACE:DETAILED",
            Name="Gable1",
            Surface_Type="Roof",
            Number_of_Vertices=4,
            View_Factor_to_Ground=0,
            Vertex_1_Xcoordinate=vert_0[0],
            Vertex_1_Ycoordinate=vert_0[1],
            Vertex_1_Zcoordinate=vert_0[2],
            Vertex_2_Xcoordinate=vert_1[0],
            Vertex_2_Ycoordinate=vert_1[1],
            Vertex_2_Zcoordinate=vert_1[2],
            Vertex_3_Xcoordinate=vert_2[0],
            Vertex_3_Ycoordinate=vert_2[1],
            Vertex_3_Zcoordinate=vert_2[2],
            Vertex_4_Xcoordinate=vert_3[0],
            Vertex_4_Ycoordinate=vert_3[1],
            Vertex_4_Zcoordinate=vert_3[2],
            Zone_Name="Attic",
        )

        vert_0 = (self.x + self.w, self.y, self.zones_height)
        vert_1 = (self.x + self.w, self.y + self.d, self.zones_height)
        vert_2 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
        vert_3 = (roof_centerline, self.y, self.total_height_with_gabling)
        idf.newidfobject(
            "BUILDINGSURFACE:DETAILED",
            Name="Gable2",
            Surface_Type="Roof",
            Number_of_Vertices=4,
            View_Factor_to_Ground=0,
            Vertex_1_Xcoordinate=vert_0[0],
            Vertex_1_Ycoordinate=vert_0[1],
            Vertex_1_Zcoordinate=vert_0[2],
            Vertex_2_Xcoordinate=vert_1[0],
            Vertex_2_Ycoordinate=vert_1[1],
            Vertex_2_Zcoordinate=vert_1[2],
            Vertex_3_Xcoordinate=vert_2[0],
            Vertex_3_Ycoordinate=vert_2[1],
            Vertex_3_Zcoordinate=vert_2[2],
            Vertex_4_Xcoordinate=vert_3[0],
            Vertex_4_Ycoordinate=vert_3[1],
            Vertex_4_Zcoordinate=vert_3[2],
            Zone_Name="Attic",
        )

        # make triangular endcaps
        vert_0 = (self.x, self.y, self.zones_height)
        vert_1 = (self.x + self.w, self.y, self.zones_height)
        vert_2 = (roof_centerline, self.y, self.total_height_with_gabling)

        idf.newidfobject(
            "BUILDINGSURFACE:DETAILED",
            Name="Endcap1",
            Surface_Type="Wall",
            Number_of_Vertices=3,
            Vertex_1_Xcoordinate=vert_0[0],
            Vertex_1_Ycoordinate=vert_0[1],
            Vertex_1_Zcoordinate=vert_0[2],
            Vertex_2_Xcoordinate=vert_1[0],
            Vertex_2_Ycoordinate=vert_1[1],
            Vertex_2_Zcoordinate=vert_1[2],
            Vertex_3_Xcoordinate=vert_2[0],
            Vertex_3_Ycoordinate=vert_2[1],
            Vertex_3_Zcoordinate=vert_2[2],
            Zone_Name="Attic",
        )

        vert_0 = (self.x + self.w, self.y + self.d, self.zones_height)
        vert_1 = (self.x, self.y + self.d, self.zones_height)
        vert_2 = (roof_centerline, self.y + self.d, self.total_height_with_gabling)
        idf.newidfobject(
            "BUILDINGSURFACE:DETAILED",
            Name="Endcap2",
            Surface_Type="Wall",
            Number_of_Vertices=3,
            Vertex_1_Xcoordinate=vert_0[0],
            Vertex_1_Ycoordinate=vert_0[1],
            Vertex_1_Zcoordinate=vert_0[2],
            Vertex_2_Xcoordinate=vert_1[0],
            Vertex_2_Ycoordinate=vert_1[1],
            Vertex_2_Zcoordinate=vert_1[2],
            Vertex_3_Xcoordinate=vert_2[0],
            Vertex_3_Ycoordinate=vert_2[1],
            Vertex_3_Zcoordinate=vert_2[2],
            Zone_Name="Attic",
        )

        idf.newidfobject(
            "BUILDINGSURFACE:DETAILED",
            Name="attic_bottom_plane",
            Surface_Type="Floor",
            Number_of_Vertices=4,
            Vertex_1_Xcoordinate=self.x + self.w,
            Vertex_1_Ycoordinate=self.y,
            Vertex_1_Zcoordinate=self.zones_height,
            Vertex_2_Xcoordinate=self.x,
            Vertex_2_Ycoordinate=self.y,
            Vertex_2_Zcoordinate=self.zones_height,
            Vertex_3_Xcoordinate=self.x,
            Vertex_3_Ycoordinate=self.y + self.d,
            Vertex_3_Zcoordinate=self.zones_height,
            Vertex_4_Xcoordinate=self.x + self.w,
            Vertex_4_Ycoordinate=self.y + self.d,
            Vertex_4_Zcoordinate=self.zones_height,
            Zone_Name="Attic",
        )

    idf.intersect_match()

    idf.set_default_constructions()

    # Handle Windows
    window_walls = [
        w
        for w in idf.idfobjects["BUILDINGSURFACE:DETAILED"]
        if w.Outside_Boundary_Condition.lower() == "outdoors"
        and "attic" not in w.Zone_Name.lower()
        and (
            not w.Zone_Name.lower().endswith(self.basement_suffix.lower())
            if self.basement
            else True
        )
        and w.Surface_Type.lower() == "wall"
    ]
    idf.set_wwr(
        wwr=self.wwr,
        construction="Project External Window",
        force=True,
        surfaces=window_walls,
    )
    return idf

compute_shading_mask(building, neighbors, neighbor_heights, azimuthal_angle) #

Compute the shading mask for the building.

This will emit a ray from the center of the building in every direction according to the azimuthal angle division of a circle.

It will compute the intersection of each ray with all the neighbor edges, and then determine the height of the each edge that intersects the ray.

That height is then used to determine an elevation angle; the max of the elevation angles for each ray is then the shading mask value for that direction.

Note that this checks all edges, so its crucial that the neighbors have already been culled to the relevant building to avoid unnecessary computation.

Parameters:

Name Type Description Default
building Polygon | str

The building to compute the shading mask for.

required
neighbors list[Polygon | str | None]

The neighbors to compute the shading mask for.

required
neighbor_heights list[float | int | None]

The heights of the neighbors.

required
azimuthal_angle float

The azimuthal angle to compute the shading mask for.

required

Returns:

Name Type Description
shading_mask ndarray

The shading mask for the building.

Source code in epinterface\geometry.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def compute_shading_mask(
    building: Polygon | str,
    neighbors: Sequence[Polygon | str | None],
    neighbor_heights: Sequence[float | int | None],
    azimuthal_angle: float,
) -> np.ndarray:
    """Compute the shading mask for the building.

    This will emit a ray from the center of the building in
    every direction according to the azimuthal angle division
    of a circle.

    It will compute the intersection of each ray with all the neighbor edges,
    and then determine the height of the each edge that intersects the ray.

    That height is then used to determine an elevation angle; the max of the elevation
    angles for each ray is then the shading mask value for that direction.

    Note that this checks all edges, so its crucial that the neighbors have
    already been culled to the relevant building to avoid unnecessary computation.

    Args:
        building (Polygon | str): The building to compute the shading mask for.
        neighbors (list[Polygon | str | None]): The neighbors to compute the shading mask for.
        neighbor_heights (list[float | int | None]): The heights of the neighbors.
        azimuthal_angle (float): The azimuthal angle to compute the shading mask for.

    Returns:
        shading_mask (np.ndarray): The shading mask for the building.
    """
    building_geom = building if isinstance(building, Polygon) else from_wkt(building)

    neighbor_geo_and_height = [
        (cast(Polygon, from_wkt(n)), float(h)) if isinstance(n, str) else (n, float(h))
        for n, h in zip(neighbors, neighbor_heights, strict=True)
        if n is not None and h is not None
    ]
    safe_neighbor_geoms = [geom for geom, _ in neighbor_geo_and_height]
    safe_neighbor_heights = [height for _, height in neighbor_geo_and_height]

    # first we compute the number of rays we need to cast
    # along with the angles at which to cast them
    n_rays = int(2 * np.pi / azimuthal_angle)
    ray_angles = np.linspace(0, 2 * np.pi - azimuthal_angle, n_rays)
    ray_distance = 9999  # an arbitrarily large distance

    # extract the relevant geometry data
    centroid = building_geom.centroid

    shading_mask = np.zeros(n_rays)

    for ray_angle_idx, ray_angle in enumerate(ray_angles):
        # create the ray as a line segment
        # using basic trig
        x_off, y_off = (
            ray_distance * np.cos(ray_angle),
            ray_distance * np.sin(ray_angle),
        )
        centroid_moved = translate(centroid, x_off, y_off)
        ray = LineString([centroid, centroid_moved])

        # track the max elevation angle for this ray so far
        max_elevation_angle = 0

        for geom, height in zip(
            safe_neighbor_geoms, safe_neighbor_heights, strict=True
        ):
            # create the line segments of the boundary
            x_coords = np.array(geom.boundary.xy[0])
            y_coords = np.array(geom.boundary.xy[1])

            for x0, y0, x1, y1 in zip(
                x_coords[:-1],
                y_coords[:-1],
                x_coords[1:],
                y_coords[1:],
                strict=True,
            ):
                line = LineString([(x0, y0), (x1, y1)])

                # compute the intersection and continue
                # if there is no intersection
                intersection = ray.intersection(line)
                if intersection.is_empty:
                    continue

                # compute the elevation angle and store it if it
                # is greater than the current max
                distance = intersection.distance(centroid)
                elevation_angle = np.arctan2(height, distance)
                max_elevation_angle = max(max_elevation_angle, elevation_angle)

        shading_mask[ray_angle_idx] = max_elevation_angle
    return shading_mask

match_idf_to_building_and_neighbors(idf, building, neighbor_polys, neighbor_floors, neighbor_f2f_height, target_short_length, target_long_length, rotation_angle) #

Match an IDF model to a building and neighbors by scaling and rotating the IDF model and adding shading blocks for neighbors.

Parameters:

Name Type Description Default
idf IDF

The IDF model to match.

required
building Polygon | str

The building to match.

required
neighbor_polys list[Polygon | str | None]

The neighbors to inject as shading.

required
neighbor_floors list[float | int | None]

The counts of the neighbors.

required
neighbor_f2f_height float | None

The height of the building to match

required
target_short_length float

The target short length of the building.

required
target_long_length float

The target long length of the building.

required
rotation_angle float

The rotation angle of the building (radians).

required

Returns:

Name Type Description
idf IDF

The matched IDF model.

Source code in epinterface\geometry.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def match_idf_to_building_and_neighbors(
    idf: IDF,
    building: Polygon | str,
    neighbor_polys: list[Polygon | str | None],
    neighbor_floors: list[float | int | None],
    neighbor_f2f_height: float,
    target_short_length: float,
    target_long_length: float,
    rotation_angle: float,
) -> IDF:
    """Match an IDF model to a building and neighbors by scaling and rotating the IDF model and adding shading blocks for neighbors.

    Args:
        idf (IDF): The IDF model to match.
        building (Polygon | str): The building to match.
        neighbor_polys (list[Polygon | str | None]): The neighbors to inject as shading.
        neighbor_floors (list[float | int | None]): The counts of the neighbors.
        neighbor_f2f_height (float | None): The height of the building to match
        target_short_length (float): The target short length of the building.
        target_long_length (float): The target long length of the building.
        rotation_angle (float): The rotation angle of the building (radians).

    Returns:
        idf (IDF): The matched IDF model.
    """
    building_geo = (
        cast(Polygon, from_wkt(building)) if isinstance(building, str) else building
    )
    neighbor_geos = [
        (cast(Polygon, from_wkt(n)), h * neighbor_f2f_height)
        if isinstance(n, str)
        else (n, h * neighbor_f2f_height)
        for n, h in zip(neighbor_polys, neighbor_floors, strict=True)
        if n is not None and h is not None
    ]
    centroid = building_geo.centroid
    translated_neighbors = [
        (translate(n, xoff=-centroid.x, yoff=-centroid.y), h) for n, h in neighbor_geos
    ]
    idf_lengths = {(e.p1 - e.p2).length for e in idf.bounding_box().edges}
    idf_x_coords = [e.p1.x for e in idf.bounding_box().edges]
    x_span = max(idf_x_coords) - min(idf_x_coords)
    idf_y_coords = [e.p1.y for e in idf.bounding_box().edges]
    y_span = max(idf_y_coords) - min(idf_y_coords)
    # TODO: better handling for boxes that aren't [(0,0),...]
    if x_span < y_span:
        raise NotImplementedError(
            "This function assumes that the long edge is the x-axis, which is not the case."
        )
    x_min = min(idf_x_coords)
    y_min = min(idf_y_coords)
    if abs(x_min) > 1e-3 or abs(y_min) > 1e-3:
        raise NotImplementedError(
            "This function assumes that the building has the lowerleft corner at the origin, which is not the case."
        )
    if len(idf_lengths) > 2:
        raise NotImplementedError(
            "The IDF model is not a rectangle, which is not yet supported."
        )

    long_length = max(idf_lengths)
    short_length = min(idf_lengths)

    idf.scale(target_long_length / long_length, anchor=Vector2D(0, 0), axes="x")
    idf.scale(target_short_length / short_length, anchor=Vector2D(0, 0), axes="y")
    idf.translate((
        -target_long_length / 2,
        -target_short_length / 2,
        0,
    ))  # This translation makes an assumption that the source building is at [(0,0),(0,w),...]
    idf.rotate(rotation_angle * 180 / np.pi)
    for i, (geom, height) in enumerate(translated_neighbors):
        if not height:
            height = 3.5 * 2
        if np.isnan(height):
            height = 3.5 * 2
        idf.add_shading_block(
            name=f"shading_{i}",
            coordinates=[Vector2D(*coord) for coord in geom.exterior.coords[:-1]],
            height=height,
        )
    return idf